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diffusion—a phase-space approach
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Road, London E1 4NS, UK
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Abstract. Quantum state diffusion (QSD) provides a natural unravelling of a mixed-state open
quantum system into component pure states. We investigate the semiclassical limit of QSD
in a phase-space approach using the Wigner function. As ¯h → 0, QSD exhibits two very
different dynamical regimes, depending on the volume of phase space covered by the quantum
state. For large volumes there is alocalization regimerepresented by classical nonlinear and
nonlocal diffusion processes. For small volumes, comparable in size with a Planck cell, there is a
wavepacket regime. Here, the centroid of the wavepacket follows a classical Langevin equation,
obtained through the adiabatic elimination of the dynamics of the second-order moments of the
wavepacket. The corresponding Fokker–Planck equation is identical to the one obtained from
the classical limit of the original mixed-state dynamics. In the companion paper we present an
axiomatic approach to a classical theory of quantum localization without using the underlying
QSD theory.

1. Introduction

Classical behaviour of a quantum system can be related to the loss of coherence produced by
interaction with the environment. This has been shown in a number of investigations based
on the reduced density operator of an open quantum system (see for instance Joos and Zeh
[2], Unruh and Zurek [3] or Zurek [4]). In this paper, however, we base our investigations
on a stochastic pure-state description of open quantum systems, quantum state diffusion
(QSD). We demonstrate how, as ¯h→ 0, QSD localizes quantum states to wavepackets of
near-Planck cell volume. These wavepackets remain localized and their centroid follows a
closed classical (dissipative and diffusive) equation of motion. The derivation of this result
is subtle and surprisingly requires careful consideration of the second-order moments of the
localized wavepacket.

1.1. Quantum description of open systems

The traditional ensemble description of Markovian open quantum systems is based on the
quantum master equation

ρ̇ = − i

h̄
[H, ρ] + 1

2

∑
µ

([Lµρ,L
†
µ] + [Lµ, ρL

†
µ]) (1)
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here written in Lindblad form [5, 6]. In (1),ρ is the density operator of the open quantum
system,H is its Hamiltonian and the Lindblad operatorsLµ represent the effects of the
environment on the system. Their dependence on ¯h is crucial for the results of this paper
and we devote a whole section to this problem.

For the Markovian equation (1) to be valid, the memory time of the environment has to
be much shorter than relevant system timescales. Usually, (1) is derived from the dynamics
of the total system within the so-called Born–Markov approximation [7], which relies not
only on a Markov but also on a weak-coupling assumption. In the very important class of
a harmonic oscillator environment with an environment-linear coupling to the system, the
derivation of a Markovian master equation can be based on the Markov assumption alone
[8–10].

Instead of the mixed-state ensemble approach (1), open quantum systems can be
described by means of the stochastic QSD equation for pure states,

|dψξ 〉 = − i

h̄
H |ψξ 〉 dt − 1

2

∑
µ

(L†µLµ − 2〈L†µ〉Lµ + |〈Lµ〉|2)|ψξ 〉 dt

+
∑
µ

(Lµ − 〈Lµ〉)|ψξ 〉 dξµ (2)

as introduced by Gisin and Percival [11–13], based on earlier work by Gisin [14, 15] and
Diósi [16–18]. The density operator evolving according to (1) is recovered by the ensemble
mean M(. . .) over the stochastic pure state projectors obtained as solutions of the QSD
unravelling (2),

ρ(t) = M(|ψξ(t)〉〈ψξ(t)|). (3)

We use the subscriptξ to indicate the dependence on the stochastic processesξµ. The
complex Wiener increments dξµ in (2) satisfy the fundamental properties [12, 13]

M(dξµ) = 0 M(dξµdξν) = 0 and M(dξµdξ ∗ν ) = δµν dt. (4)

The QSD equation (2) is nonlinear because of the terms which include the expectation
values〈Lµ〉ξ . In QSD, it is important to distinguish between quantum expectation values
〈A〉ξ = 〈ψξ |A|ψξ 〉 and the classical ensemble mean M(. . .). From (3) we see the equivalence
Tr(Aρ) = M(〈A〉ξ ).

QSD has proven to be an effective quantum trajectory method for the numerical solution
of the master equation (1) [12, 21–28] which is due to the localization property of QSD:
state vectors tend to localize towards wavepackets, thus reducing the computational effort
tremendously. This has been shown by Diósi [17], Gisin and Percival [12], Percival [19] and
Halliwell and Zoupas [20]. Many numerical investigations also show, and some exploit, the
localizing property of QSD, see Gisin and Percival [13], Spiller and Ralph [21], Garraway
and Knight [22], Steimleet al [23], Schacket al [24, 27], Gisin and Rigo [25, 26] or Brun
et al [28].

From a fundamental viewpoint, QSD represents a dynamical model for quantum
measurement [11–18]. As such it can be derived microscopically as the evolution equation
of the state vector of a continuously measured system conditioned on the measurement
outcome [7].

We focus on the classical ¯h → 0 limit of QSD, which shows a rich dynamical
structure ultimately leading to the classical dynamics of point particles. Classical dynamics
emerges from quantum dynamics not only through Ehrenfest classical evolution equations
for quantum expectation values, but also through a mechanism for localization, preventing
quantum wavepackets from spreading. The localization becomes stronger as the open
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quantum system becomes more classical. This paper investigates the semiclassical (¯h→ 0)
limit of QSD in the phase-space approach, to clarify the general mechanism for localization
in QSD and the emergence of classical evolution equations. First, however, we review the
classical theory of open systems.

1.2. Classical description of open systems

In classical physics, the distributionρ(q,p) in 2d-dimensional phase space replaces the
quantum density operator. Its time evolution is given by a diffusion equation, in the simplest
case a phase-space Fokker–Planck equation [29, 30]

∂ρ(q,p, t)

∂t
= −

∑
i

∂i [Aiρ] + 1

2

∑
ij

∂i∂j [(BBT )ij ρ] (5)

with drift vector A and diffusion matrixB. We use the phase-space notation for the
derivatives,

(∂1, . . . , ∂d, ∂d+1, . . . , ∂2d) =
(
∂

∂q1
, . . . ,

∂

∂qd
,
∂

∂p1
, . . . ,

∂

∂pd

)
. (6)

The Fokker–Planck equation (5) describes the time evolution of an ensemble of point
particles whose diffusive dynamics is given by the associated classical Langevin–Itô equation
[29, 30] (

dq
dp

)
= A(q,p) dt + B(q,p)dw (7)

with 2d-dimensional Wiener increment vectorsdw = (dw1, . . . ,dw2d), satisfying

M(dwi dwj) = δij dt. (8)

Expression (7) clarifies the use of the terms ‘drift vector’ and ‘diffusion matrix’ forA and
B [29].

The relation between the classical Fokker–Planck equation (5) for the ensemble and the
classical stochastic Langevin–Itô equation (7) for a pure state of the ensemble is analogous
to the relation between the quantum master equation (1) and the QSD equation (2). See
figure 1 for a visualization of this relation. As in the quantum case, for a pure-state initial
distribution, we recover the solution of the Fokker–Planck equation (5) as the ensemble
mean over the classical pure states (point distributions),

ρ(q,p, t) = M(δ(q − qw(t))δ(p− pw(t))) (9)

where the trajectories(qw(t),pw(t)) are solutions of the Langevin–Itô equation (7) and the
ensemble mean is taken over the stochastic processesw(t) with increments (8).

1.3. Thēh-dependence of the environmental terms

We are interested in the semiclassical ¯h → 0 limit of open quantum systems whose time
evolution is described by a master equation of Lindblad form (1). We keep only those
contributions from Lindblad operatorsLµ = Lµ(h̄) that actually survive the classical ¯h→ 0
limit.

In this respect, non-Hermitian Lindblad operatorsL 6= L† with a contribution
1
2([Lρ,L

†] + [L, ρL†]) (10)

to the master equation and Hermitian Lindblad operatorsL = L† ≡ K with
1
2([Kρ,K] + [K, ρK]) = − 1

2[K, [K, ρ]] (11)
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Figure 1. Relation between various descriptions of open systems.

behave quite differently as ¯h → 0. As will be demonstrated in detail in section 2, we
can replace—to lowest order in ¯h—commutators [, ] by Poisson brackets i¯h{, }. While
contributions of the form (10) gain a factor ¯h, contributions of Hermitian Lindblad operators
(11) gain a factor ¯h2. If terms (10) and (11) are to survive the ¯h→ 0 limit, they have to
be of the form

1

2h̄
([Lρ,L†] + [L, ρL†]) (12)

for the case of non-Hermitian operatorsL, and

− 1

2h̄2 [K, [K, ρ]] (13)

for Hermitian Lindblad operatorsK, where we assume that both operators approach a finite
operator as ¯h → 0. These arguments for the ¯h-dependence of the environmental terms in
the Lindblad master equation are supported by well known examples of open system master
equations, as for instance a cavity mode coupled to a thermal reservoir [6, 7] or the quantum
Brownian motion master equation [9, 10].

TheL-terms (12) lead to classicaldissipationwhile theK-terms (13) describe classical
diffusion. If the master equation is to describe the coupling to heat bath, for instance, these
contributions are related through the fluctuation–dissipation theorem. If the master equation
describes the coupling to a zero-temperature bath, there is only dissipation and no thermal
fluctuations (K ≡ 0) [6, 7].

If the master equation represents the effects of a measurement only, there is no
dissipation (L ≡ 0) and the Hermitian operatorK represents the measured observable
[31]. We consider this situation in the companion paper [1].

We conclude that as ¯h→ 0, keeping relevant terms, the environmental contribution to
the Lindblad master equation has to be of the form

1

2h̄

∑
µ

([Lµρ,L
†
µ] + [Lµ, ρL

†
µ])− 1

2h̄2

∑
ν

[Kν, [Kν, ρ]] (14)

with Lindblad operatorsLµ 6= L†µ andKν = K†ν independent of ¯h. This form (14) of the
environmental terms in the Lindblad master equation is the basis of our investigations. It is
interesting to see the effects of the various terms when open systems are described in terms
of QSD.



Classical mechanics from quantum state diffusion 1805

1.4. The semiclassical limit

In the traditional ensemble description of open systems, as ¯h→ 0, a classical phase-space
Fokker–Planck equation can be derived from the quantum master equation (section 2) (see
figure 1). However, on the pure-state level, the corresponding semiclassical limit is subtle
(section 3). QSD shows two very different semiclassical limits.

If the quantum state is not yet localized in phase space, then, in the semiclassical limit,
QSD works in its localization regime (section 4). This is a very interesting regime since
it incorporates a classical, nonlinear and nonlocal, purely diffusive evolution equation for
a phase-space density, leading to its localization in phase space. The derivation of this
localization theory is one of the main results of this paper. It can be seen as the dynamical
way QSD chooses random initial conditions to be propagated by a classical Langevin
equation. In the traditional simulation of the Fokker–Planck equation with the classical
Langevin equation, random initial conditions have to be chosen ‘by hand’. Therefore, this
localization theory has no counterpart in the traditional classical dynamical theory of open
systems (Fokker–Planck or Langevin equations). Nevertheless, the companion paper [1]
introduces a classical theory of this localization regime.

When the localization has taken place we enter the wavepacket regime of QSD
(section 5). The phase-space volume occupied by the quantum state is of the order ¯hd . The
stochastic evolution equation for the centroid of the wavepacket corresponds—to leading
order in h̄—exactly to the Fokker–Planck equation, which was originally derived directly
from the quantum master equation (see figure 1). We clarify these subtle connections in
detail.

This paper is organized as follows. In section 2 we review the traditional semiclassical
approach in deriving the Fokker–Planck equation from the master equation and state the
corresponding classical Langevin–Itô equation. We express the classical drift vectorA and
the diffusion matrixB in terms of the Wigner–Moyal transforms of the quantum operators
H,Lµ andKν . Remarkably, we see the first hints of QSD even in this traditional approach.

The main results appear in sections 3–5. In section 3 we derive the semiclassical limit
of QSD in a phase-space approach. Two dynamical regimes emerge, the localization regime
investigated in section 4 and the wavepacket regime developed in section 5. In the latter
regime, it is appropriate to describe the state vector in terms of the centroid and moments
of the wavepacket, establishing in detail the connection to the classical Langevin equation
as derived in section 2. We close with a summary and conclusions in the final section 6.

2. Traditional semiclassical limit of the master equation

The starting point is the most general quantum master equation (1) for a Markovian open
quantum system

ρ̇ = − i

h̄
[H, ρ] + 1

2h̄

∑
µ

([Lµρ,L
†
µ] + [Lµ, ρL

†
µ])− 1

2h̄2

∑
ν

[Kν, [Kν, ρ]] (15)

written in the form (14) to help the investigation of the ¯h→ 0 limit. We show that the non-
Hermitian operatorsLµ lead to dissipation andquantumfluctuations, while the Hermitian
operatorsKν describeclassical fluctuations and sometimes also contribute to dissipation.

In order to investigate the semiclassical limit of the master equation (15), we replace
the density operator by its corresponding Wigner functionW(q,p) [32] in 2d-dimensional



1806 W T Strunz and I C Percival

phase space,

W(q,p) = 2d(2πh̄)−(d/2)
∫

dx 〈q − x|ρ|q + x〉〈x|2p〉. (16)

Likewise we replace the operators by their Wigner–Moyal transforms [33]H(q,p), Lµ(q,p)
andKν(q,p). Expanding the resulting evolution equation for the Wigner function to first
order inh̄, it takes the differential form

∂W

∂t
= {H,W } +

(
i

2

)∑
µ

({LµW,L∗µ} + {Lµ,WL∗µ})+
1

2

∑
ν

{Kν, {Kν,W }}

−
(
h̄

4

)∑
µ

({Lµ, {W,L∗µ}} + {{Lµ,W }, L∗µ}) (17)

where{, } denotes the classical Poisson bracket

{f, g} =
d∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
. (18)

Notice that to zeroth order (¯h = 0), the evolution equation (17) is formally just the
original master equation with the canonical replacement of commutators by Poisson brackets,
[, ] → ih̄{, }.

2.1. Fokker–Planck equation

Equation (17) is in fact a phase-space Fokker–Planck equation [29, 30]. This implies that
if the initial Wigner function is a classical phase space probability distribution, it remains a
probability distribution for all times. After rearranging, (17) takes the Fokker–Planck form
(5):

∂W

∂t
= −

∑
i

∂i [AiW ] + 1

2

∑
ν

{∑
ij

∂i∂j [(BνB
T
ν )ijW ]

}
+h̄

2

∑
µ

{∑
ij

∂i∂j [(CµC
T
µ )ijW ]

}
(19)

with the phase-space notation (6) for the derivatives∂i .
The drift vectorA in (19) consists of the Hamiltonian contributionAH , contributions

from the non-Hermitian (ALµ ) and from the Hermitian (AKν ) Lindblad operators so that

A = AH +
∑
µ

ALµ +
∑
ν

AKν . (20)

We find

AH =
( ∂H

∂p

− ∂H
∂q

)
ALµ =

(
Yµ

∂Xµ
∂p
−Xµ ∂Yµ∂p

Xµ
∂Yµ
∂q
− Yµ ∂Xµ∂q

)
AKν =

( 1
2{ ∂Kν∂p ,Kν}
1
2{Kν, ∂Kν∂q }

)
(21)

whereLµ(q,p) = Xµ(q,p)+ iYµ(q,p).
It is apparent that the contributionAKν of the Hermitian Lindblad operators to the drift

vanishes for linear operatorsKν(q,p) as in many important applications. It also vanishes
for purely position- or momentum-dependent operatorsKν(q) or Kν(p). In these cases the
phase-space divergence of the vector fieldA is determined from the contribution of the
non-Hermitian environmental terms only,

divA =
∑
µ

divALµ = −2
∑
µ

{Xµ, Yµ}. (22)
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We see that the Fokker–Planck equation describes classical dissipation for
∑

µ{Xµ, Yµ} > 0,
since, according to Liouville’s theorem [34], phase-space volumes then shrink under time
evolution.

The diffusion terms in the Fokker–Planck equation describe fluctuations. They are
determined by the 2d × 2d diffusion matricesBν andCµ in (19)

Bν = 1√
d



− ∂Kν
∂p1

· · · − ∂Kν
∂p1

0 · · · 0
...

...
...

...
...

...

− ∂Kν
∂pd

· · · − ∂Kν
∂pd

0 · · · 0
∂Kν
∂q1

· · · ∂Kν
∂q1

0 · · · 0
...

...
...

...
...

...
∂Kν
∂qd

· · · ∂Kν
∂qd

0 · · · 0



Cµ = 1√
d



− ∂Xµ
∂p1

· · · − ∂Xµ
∂p1

− ∂Yµ
∂p1

· · · − ∂Yµ
∂p1

...
...

...
...

...
...

− ∂Xµ
∂pd

· · · − ∂Xµ
∂pd

− ∂Yµ
∂pd

· · · − ∂Yµ
∂pd

∂Xµ
∂q1

· · · ∂Xµ
∂q1

∂Yµ
∂q1

· · · ∂Yµ
∂q1

...
...

...
...

...
...

∂Xµ
∂qd

· · · ∂Xµ
∂qd

∂Yµ
∂qd

· · · ∂Yµ
∂qd


.

(23)

The HermitianKν in the master equation describe classical fluctuations (matricesBν). If
the master equation describes the relaxation to a steady equilibrium density operator, these
fluctuations and the dissipative terms are related by the fluctuation–dissipation theorem
[6, 29, 30].

When there are no classical fluctuations, as for a zero-temperature bath, there are still
quantum fluctuations (matricesCµ) arising from the non-HermitianLµ. The reason for
their appearance is that the shrinking due to the dissipative drift would eventually lead to a
violation of Heisenberg’s indeterminacy principle, if it were not for these terms of order ¯h.

We conclude that the non-Hermitian Lindblad termsLµ contribute to zeroth order in
h̄ to the drift and to first order in ¯h to the diffusion (quantumnoise), while the Hermitian
Lindblad termsKν contribute to zeroth order to the diffusion (classicalnoise) and for some
Kν also to the drift, but they have no first-order contribution.

2.2. Classical Langevin equation

Here we show that the classical Langevin–Itô equation associated with the Fokker–Planck
equation (19) (

dq
dp

)
= A(q,p) dt +

∑
ν

Bν(q,p)dwν +
√
h̄
∑
µ

Cµ(q,p)dwµ (24)

with drift vector (20), diffusion matrices (23) and 2d-dimensional independent Wiener
increment vectorsdwν,dwµ (dw(i)κ dw(j)λ = δκλδij dt) can be conveniently described in
terms of complex Wiener increments which already suggest a connection with QSD.

To zeroth order in ¯h, (24) describes a classical dynamical system with a (in general
non-Hamiltonian) vector fieldA(q,p) and diffusion matricesBν . The first quantum effect
in (24) appears as quantum noise, preventing the evolution equation (24) from approaching
a stationary solution, the manifestation of Heisenberg’s indeterminacy principle.
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At first sight, it appears that the Langevin equation (24) requires 2d independent Wiener
increments dw(i)ν (or dw(i)µ ) for each of the Lindblad operatorsKν (orLµ). Due to the special
form of the diffusion matricesBν andCµ (23) however, we can define the combined real
Wiener increments

dwν ≡ 1√
d
(dw(1)ν + · · · + dw(d)ν ) (25)

for the classical fluctuations and thecomplexWiener increments

dξµ ≡ 1√
2d
((dw(d+1)

µ + · · · + dw(2d)µ )+ i(dw(1)µ + · · · + dw(d)µ )) (26)

for the quantum fluctuations, which satisfy the fundamental properties of complex noise (4).
Rewriting the classical Langevin–Itô equation (24) in terms of these newly defined Wiener
increments, we get(
dq
dp

)
= A(q,p) dt +

∑
ν

J [∇Kν ] dwν + 2
√
h̄Re

(∑
µ

(
− i√

2
J [∇Lµ]

)
dξµ

)
(27)

where(∇Kν)i = ∂iKν andJ is the 2d × 2d symplectic unit matrix

J =
(

0 −E
E 0

)
(28)

with the d × d unit matrix Eij = δij . It is remarkable that this classical pure-state
description already hints, through the complex noise in the quantum fluctuations, at an
underlying quantum description in terms of QSD. The QSD equation (2) also requires
complex independent increments, one for each Lindblad operator, just like the quantum
fluctuations of the classical Langevin equation (27).

To summarize this traditional approach to open quantum systems, one takes the
semiclassical limit at theensemblelevel, leading from the quantum master equation to
a classical Fokker–Planck equation. The associated classical pure-state description in terms
of a Langevin–It̂o equation (27) is then interpreted as the (semi)classical dynamics of an
individual member of the original quantum ensemble.

3. Phase-space QSD and its semiclassical limit

We now investigate what happens if we take the semiclassical limit directly at the quantum
pure-state level, starting from a stochastic QSD description of the open system dynamics.
We see that this limit shows some new features.

The quantum pure-state description is given by the QSD equation (2) [11–13], which
for the master equation (15) takes the form

|dψξ 〉 = − i

h̄
H |ψξ 〉 dt − 1

2h̄

∑
µ

(L†µLµ − 2〈L†µ〉Lµ + |〈Lµ〉|2)|ψξ 〉 dt

+ 1√
h̄

∑
µ

(Lµ − 〈Lµ〉)|ψξ 〉 dξµ − 1

2h̄2

∑
ν

(Kν − 〈Kν〉)2|ψξ 〉 dt

+1

h̄

∑
ν

(Kν − 〈Kν〉)|ψξ 〉 dξν (29)

where the independent complex Wiener increments dξµ, dξν satisfy (4).
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In analogy with the derivation of the Fokker–Planck equation from the quantum master
equation, we use a phase-space description to investigate the semiclassical limit of QSD.
We introduce the Wigner function

Wξ(q,p) = 2d(2πh̄)−(d/2)
∫

dx〈q − x|ψξ 〉〈ψξ |q + x〉〈x|2p〉 (30)

to represent an individual member of the ensemble. The Wigner functionW(q,p, t) of the
ensemble as introduced in the last section is recovered by the ensemble mean

W(q,p, t) = M(Wξ (q,p, t)). (31)

The QSD time evolution of these stochastic Wigner functionsWξ is based on the stochastic
evolution of the pure-state projectors|ψξ 〉〈ψξ | of the QSD solutions|ψξ 〉 as investigated
by Diósi [16, 17], Gatarek and Gisin [36] and Gisin and Rigo [25]. We find an expression
of the form

dWξ = [drift] d t + 2Re

(∑
µ

[L-diffusion]µ dξµ

)
+ 2Re

(∑
ν

[K-diffusion]ν dξν

)
. (32)

The terms ‘drift’ and ‘diffusion’ here refer to the dynamics in the space of Wigner functions
and must not be confused with the drift and diffusion of phase space points described by
the Fokker–Planck equation. Since the diffusion terms in (32) vanish in the mean, we see
from (31) that the drift in (32) is given by the ensemble evolution and thus the quantum
master equation. In the semiclassical limit, keeping terms up to first order in ¯h, this is just
the Fokker–Planck expression (19),

[drift] = [Fokker–Planck]+O(h̄2) for h̄→ 0. (33)

More interesting are the stochastic contributions. To be consistent, we keep terms up
to order

√
h̄ only and find

[L-diffusion]µ = 1√
h̄
(Lµ(q,p)− 〈Lµ〉)Wξ (q,p)+ i

√
h̄

2
{Lµ,Wξ }

[K-diffusion]ν = 1

h̄
(Kν(q,p)− 〈Kν〉)Wξ (q,p)+ i

2
{Kν,Wξ }

(34)

where{, } denotes the classical Poisson bracket (18). The quantum expectation values〈Lµ〉
and〈Kν〉 in (34) can be expressed in terms of Wigner–Moyal transforms, e.g.

〈Lµ〉 =
∫

dq
∫

dpLµ(q,p)Wξ (q,p, t). (35)

The semiclassical evolution equation for the Wigner function of a solution of the QSD
equation (29) is therefore given by equation (32) with the Fokker–Planck drift term (19)
and the diffusion terms (34),

dWξ =
[
−
∑
i

∂i [AiWξ ] + 1

2

∑
ν

{∑
ij

∂i∂j [(BνB
T
ν )ijWξ ]

}
+h̄

2

∑
µ

{∑
ij

∂i∂j [(CµC
T
µ )ijWξ ]

}]
dt

+2Re

(∑
µ

[
1√
h̄
(Lµ(q,p)− 〈Lµ〉)Wξ (q,p)+ i

√
h̄

2
{Lµ,Wξ }

]
dξµ

)
+
∑
ν

1

h̄
[(Kν(q,p)− 〈Kν〉)Wξ (q,p)2Re(dξν)] − {Kν,Wξ }Im (dξν). (36)
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Some algebra shows that since dNW = 0, this semiclassical QSD equation preserves the
norm

NW =
∫

dq
∫

dpWξ(q,p) = 1. (37)

Equation (36) is the semiclassical QSD evolution for the Wigner function and a main result
of this paper. While a lot is known about the Fokker–Planck drift term [29, 30], the
additional diffusion terms (34) arising from a QSD description are of a new type. They
give rise to the classical localization theory introduced in the next section.

Finally, notice also that the semiclassical QSD equation (36) is exact for a quadratic
Hamiltonian and linear Lindblad operators.

4. The localization regime

The classical limit of QSD as described by the evolution equation (36) appears to be singular
because of the factors ¯h−1 in theK-diffusion andh̄−

1
2 in the L-diffusion. The ensemble

description had a regular classical (¯h = 0) limit. Here, as ¯h→ 0, even the drift term, which
includes the Hamiltonian term and is of the order ¯h0, becomes negligible by comparison
with the dominant ¯h−1 K-diffusion. In this limit, the system becomes indistinguishable
from a wide open system [19] and the evolution has fluctuations but no drift

dWw =
√

2

h̄

∑
ν

(Kν − 〈Kν〉)Ww dwν (38)

where we introduced the normalized real Wiener increments dwν ≡
√

2Re dξν . This is
an interesting nonlinear and nonlocal evolution equation for a phase-space density, which
is discussed in more detail in the companion paper [1]. It is in itself norm preserving
dNW = 0.

In general, the evolution with (38) localizes the Wigner functionWw to a phase-space
point (our analysis follows the quantum theory of wide open systems [19]): for a single
Lindblad functionK, the time evolution of its expectation value is

d〈K〉 =
√

2

h̄
(〈K2〉 − 〈K〉2) dw (39)

showing that a stationary solution has minimum uncertainty in the value ofK. Thus,Ww

becomes localized on a(2d − 1)-dimensional hypersurfaceK(q,p) = constant in phase
space. This reflects the ability of QSD to model a quantum measurement situation.

For many independent Lindblad functionsKν , the intersection of all localization
hypersurfacesKν(q,p) = constant is in general a single phase-space point, the stationary
phase-space distribution becomes a delta function. Due to the singular

√
2/h̄ prefactor,

this localization process is faster the more classical (i.e. macroscopic) the system, just as
expected. The localization properties of equation (38) are discussed in greater detail in the
companion paper [1].

However, caution is required. QSD has an inbuilt mechanism to regularize the
semiclassical limit. If the evolution with (38) has localized the Wigner function to a phase
space region that compares with the Planck volume ¯hd , the term(Kν − 〈Kν〉)Ww is itself
of the order ofh̄ in the relevant phase-space region. The whole expression (38) is now of
the order ofh̄0 = 1, implying that the drift and the remainingK-diffusion term is now of
the same order and may no longer be neglected.
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The strong localization (¯h−1) arises from K-diffusion and thus from classical
fluctuations. If the fluctuations are purely quantal (Kν ≡ 0), there is still singular (¯h−

1
2 )

localization arising fromL-diffusion. This contribution, however, becomes negligible (¯h
1
2 )

as the extension of the wavepacket approaches the volume of a Planck cell and complete
localization might not occur.

We see that the semiclassical phase-space picture of QSD consists of two very different
dynamical regimes. As long as the Wigner function is spread over a large phase-space
volume, singular (¯h−1) diffusion according to (38) is the dominant process, producing fast
localization of the Wigner function to a phase-space point. For a state of macroscopic
extension the localization is instantaneous for all practical purposes. As soon as the spread
of the Wigner function approaches the fundamental quantum volume ¯hd , however, the
remaining terms in (36) become comparable, including the drift, regularizing the ¯h → 0
limit. The dynamics of this resulting wavepacket is treated in the next section. The classical
limit of localization by Hermitian operatorsKν is treated in detail in the companion paper
[1].

5. The wavepacket regime

Once the state vector has localized to near-Planck volume ¯hd , we enter the wavepacket
regime of QSD. Here we demonstrate that the ¯h expansion has a different form in the
wavepacket regime. The semiclassical QSD time evolution of the Wigner function must be
described by the whole expression (36).

It is appropriate to describe a localized state in terms of its centroid and spread in phase
space. Such evolution equations were derived by Salama and Gisin [35] and Halliwell and
Zoupas [20]. We introduce the expectation values

Q(t) = 〈q〉 =
∫

dq
∫

dpqWξ(q,p, t) and P (t) = 〈p〉 (40)

and the phase-space deviations

1i = qi −Qi and 1d+i = pi − Pi (i = 1, . . . , d) (41)

with scaled moments

σi1i2...in = h̄−
n
2 〈1i11i2 . . . 1in〉. (42)

In the regime of interest, the scaling ensures that all momentsσi1i2...in are of the order of
h̄0 = 1.

We can now derive an approximate evolution equation for the centroid(Q(t),P (t))
and the second-order momentsσkl by consistently expanding in powers of ¯h. With the full
semiclassical evolution equation (36) and a lengthy calculation of the lowest orders in ¯h we
find(
dQ
dP

)
= A dt +

∑
ν

(2σRe(dξν)+ J Im (dξν))[∇Kν ]

+2
√
h̄Re

(∑
µ

((
σ − i

2
J
)

[∇Lµ]

)
dξµ

)
(43)

for the evolution of the centroid and

dσ = 1

2h̄
(M− 4σJMJ T σ ) dt +O(h̄0) (44)
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for the evolution of the moment matrix. We use the same notation as for the classical
Langevin equation (27) and in (44) the (2d × 2d) matrixM is

M =M(Q,P ) =
∑
ν

BνB
T
ν =

∑
ν

( ∂Kν
∂pi

∂Kν
∂pj

− ∂Kν
∂pi

∂Kν
∂qj

− ∂Kν
∂qi

∂Kν
∂pj

∂Kν
∂qi

∂Kν
∂qj

)
. (45)

We see from (43) that in QSD, as ¯h→ 0, the drift of the centroid is identical to the drift
in the classical equation (27). The fluctuations in (43), however, are made up of two parts.
One depends on the imaginary part Im(dξν) of the QSD fluctuations. This term coincides
with the fluctuations of the classical Langevin equation (27) apart from a factor of

√
2,

arising from the normalization of the noise:(Im (dξν))2 = dt/2. Such a term describes
the effect of the Hermitian environmental contributions as originating from a fluctuating
Hamiltonian. The second contribution to the classical fluctuations of the centroid in (43),
however, depends onσ , the second-order moments of the wavepacket, even as ¯h → 0.
These fluctuations originate from the localization (Re(dξν)) in QSD.

The singular prefactor(2h̄)−1 in (44) makes the dynamics of the moments extremely
fast by comparison with the dynamics of the centroid. Consequently the moments
σ = σ(Q,P ) adjust almost instantaneously to the valueσ̄ (Q,P ) determined by putting
the time dependence in (44) equal to zero (adiabatic elimination). This gives

σ̄JMJ T σ̄ = 4M. (46)

Replacingσ(Q,P ) by σ̄ (Q,P ) in (43), we get a closed evolution equation for the centroid
(Q,P ) of the QSD wavepacket. While it appears impossible to solve forσ̄ (Q,P ) in (46)
in the general case, it is easy to show, using Itô calculus, that the Fokker–Planck equation
corresponding to the QSD-Langevin equation (43) with the ‘classical’ momentsσ̄ (Q,P )
determined by (46), coincides with the classical Fokker–Planck equation (19) to leading
order inh̄.

We now see that in the classical limit of the wavepacket regime the centroid of the QSD
wavepackets follows a closed evolution equation which is stochastically equivalent to the
classical Langevin equation (27), but the way this emerges is very subtle. The fluctuations
of the centroid depend on the shapeσ of the wavepacket and it is the almost instantaneous
adjustment of these moments to their valueσ̄ given by (46) on which this equivalence is
based.

6. Summary

We have presented a comprehensive theory of the semiclassical limit of QSD using the
Wigner representation in phase space. We find two qualitatively very different dynamical
regimes, confirming and extending earlier results on localization in QSD [19].

If the phase-space volume occupied by the quantum state is large compared with the
Planck volume ¯hd , QSD acts in its localization regime. The limit is a classical localization
theory represented by a nonlinear, nonlocal, purely diffusive evolution equation for a phase-
space density, reflecting the localization property of QSD. Further properties of this regime
are presented in the companion paper [1].

Once localization has taken place so that the state vector covers a phase-space volume
comparable with ¯hd , QSD enters its wavepacket regime, when the localization is essentially
complete. As ¯h → 0, the QSD-Langevin equation for the centroid of the wavepacket
is stochastically equivalent to the classical Langevin equation. This shows explicitly and
generally that QSD results in classical dynamics of wavepackets in the limit as ¯h→ 0.
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